Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

On the asymptotic behavior of the contaminated sample mean (1502.07181v5)

Published 25 Feb 2015 in math.ST and stat.TH

Abstract: An observation of a cumulative distribution function $F$ with finite variance is said to be contaminated according to the inflated variance model if it has a large probability of coming from the original target distribution $F$, but a small probability of coming from a contaminating distribution that has the same mean and shape as $F$, though a larger variance. It is well known that in the presence of data contamination, the ordinary sample mean looses many of its good properties, making it preferable to use more robust estimators. From a didactical point of view, it is insightful to see to what extent an intuitive estimator such as the sample mean becomes less favorable in a contaminated setting. In this paper, we investigate under which conditions the sample mean, based on a finite number of independent observations of $F$ which are contaminated according to the inflated variance model, is a valid estimator for the mean of $F$. In particular, we examine to what extent this estimator is weakly consistent for the mean of $F$ and asymptotically normal. As classical central limit theory is generally inaccurate to cope with the asymptotic normality in this setting, we invoke more general approximate central limit theory as developed by Berckmoes, Lowen, and Van Casteren (2013). Our theoretical results are illustrated by a specific example and a simulation study.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.