Non-Abelian phases in two-component $ν=2/3$ fractional quantum Hall states: Emergence of Fibonacci anyons (1502.05391v4)
Abstract: Recent theoretical insights into the possibility of non-Abelian phases in $\nu=2/3$ fractional quantum Hall states revived the interest in the numerical phase diagram of the problem. We investigate the effect of various kinds of two-body interlayer couplings on the $(330)$ bilayer state and exactly solve the Hamiltonian for up to $14$ electrons on sphere and torus geometries. We consider interlayer tunneling, short-ranged repulsive/attractive pseudopotential interactions and Coulomb repulsion. We find a 6-fold ground-state degeneracy on the torus when the interlayer hollow-core interaction is dominant. To identify the topological nature of this phase we measure the orbital-cut entanglement spectrum, quasihole counting, topological entanglement entropy, and wave-function overlap. Comparing the numerical results to the theoretical predictions, we interpret this 6-fold ground-state degeneracy phase to be the non-Abelian bilayer Fibonacci state.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.