Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 103 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 241 tok/s Pro
2000 character limit reached

On the spectral norm of Gaussian random matrices (1502.05003v4)

Published 17 Feb 2015 in math.PR, math.FA, and math.MG

Abstract: Let $X$ be a $d\times d$ symmetric random matrix with independent but non-identically distributed Gaussian entries. It has been conjectured by Lata\l{a} that the spectral norm of $X$ is always of the same order as the largest Euclidean norm of its rows. A positive resolution of this conjecture would provide a sharp understanding of the probabilistic mechanisms that control the spectral norm of inhomogeneous Gaussian random matrices. This paper establishes the conjecture up to a dimensional factor of order $\sqrt{\log\log d}$. Moreover, dimension-free bounds are developed that are optimal to leading order and that establish the conjecture in special cases. The proofs of these results shed significant light on the geometry of the underlying Gaussian processes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)