Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Combining probability distributions: Extending the logarithmic pooling approach (1502.04206v2)

Published 14 Feb 2015 in stat.ME

Abstract: Combining distributions is an important issue in decision theory and Bayesian inference. Logarithmic pooling is a popular method to aggregate expert opinions by using a set of weights that reflect the reliability of each information source. However, the resulting pooled distribution depends heavily on set of weights given to each opinion/prior and thus careful consideration must be given to the choice of weights. In this paper we review and extend the statistical theory of logarithmic pooling, focusing on the assignment of the weights using a hierarchical prior distribution. We explore several statistical applications, such as the estimation of survival probabilities, meta-analysis and Bayesian melding of deterministic models of population growth and epidemics. We show that it is possible learn the weights from data, although identifiability issues may arise for some configurations of priors and data. Furthermore, we show how the hierarchical approach leads to posterior distributions that are able to accommodate prior-data conflict in complex models.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.