On the subinvariance of uniform domains in metric spaces (1501.07375v2)
Abstract: Suppose that $X$ and $Y$ are quasiconvex and complete metric spaces, that $G\subset X$ and $G'\subset Y$ are domains, and that $f: G\to G'$ is a homeomorphism. Our main result is the following subinvariance property of the class of uniform domains: Suppose both $f$ and $f{-1}$ are weakly quasisymmetric mappings and $G'$ is a quasiconvex domain. Then the image $f(D)$ of every uniform subdomain $D$ in $G$ under $f$ is uniform. The subinvariance of uniform domains with respect to freely quasiconformal mappings or quasihyperbolic mappings is also studied with the additional condition that both $G$ and $G'$ are locally John domains.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.