Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 32 tok/s Pro
2000 character limit reached

Cauchy Problem of the non-self-adjoint Gauss-Laguerre semigroups and uniform bounds of generalized Laguerre polynomials (1501.06433v2)

Published 26 Jan 2015 in math.PR, math.FA, and math.SP

Abstract: We propose a new approach to construct the eigenvalue expansion in a weighted Hilbert space of the solution to the Cauchy problem associated to Gauss-Laguerre invariant Markov semigroups that we introduce. Their generators turn out to be natural non-self-adjoint and non-local generalizations of the Laguerre differential operator. Our methods rely on intertwining relations that we establish between these semigroups and the classical Laguerre semigroup and combine with techniques based on non-harmonic analysis. As a by-product we also provide regularity properties for the semigroups as well as for their heat kernels. The biorthogonal sequences that appear in their eigenvalue expansion can be expressed in terms of sequences of polynomials, and they generalize the Laguerre polynomials. By means of a delicate saddle point method, we derive uniform asymptotic bounds that allow us to get an upper bound for their norms in weighted Hilbert spaces. We believe that this work opens a way to construct spectral expansions for more general non-self-adjoint Markov semigroups.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube