Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Propagation using Chain Event Graphs (1206.3293v1)

Published 13 Jun 2012 in cs.AI and cs.CL

Abstract: A Chain Event Graph (CEG) is a graphial model which designed to embody conditional independencies in problems whose state spaces are highly asymmetric and do not admit a natural product structure. In this paer we present a probability propagation algorithm which uses the topology of the CEG to build a transporter CEG. Intriungly,the transporter CEG is directly analogous to the triangulated Bayesian Network (BN) in the more conventional junction tree propagation algorithms used with BNs. The propagation method uses factorization formulae also analogous to (but different from) the ones using potentials on cliques and separators of the BN. It appears that the methods will be typically more efficient than the BN algorithms when applied to contexts where there is significant asymmetry present.

Citations (32)

Summary

We haven't generated a summary for this paper yet.