Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quasi-translations and singular Hessians (1501.05168v1)

Published 21 Jan 2015 in math.AG

Abstract: In 1876 in [8], the authors Paul Gordan and Max N\"other classify all homogeneous polynomials h in at most five variables for which the Hessian determinant vanishes. For that purpose, they study quasi-translations which are associated with singular Hessians. We will explain what quasi-translations are and formulate some elementary properties of them. Additionally, we classify all quasi-translations with Jacobian rank one and all so-called irreducible homogeneous quasi-translations with Jacobian rank two. The latter is an important result of [8]. Using these results, we classify all quasi-translations in dimension at most three and all homogeneous quasi-translations in dimension at most four. Furthermore, we describe the connection of quasi-translation with singular Hessians, and as an application, we will classify all polynomials in dimension two and all homogeneous polynomials in dimensions three and four whose Hessian determinant vanishes. More precisely, we will show that up to linear terms, these polynomials can be expressed in n-1 linear forms, where n is the dimension, according to an invalid theorem of Hesse. In the last section, we formulate some known results and conjectures in connection with quasi-translations and singular Hessians.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.