Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Homogeneous quasi-translations in dimension 5 (1501.04845v3)

Published 20 Jan 2015 in math.AG

Abstract: We give a proof in modern language of the following result by Paul Gordan and Max N\"other: a homogeneous quasi-translation in dimension $5$ without linear invariants would be linearly conjugate to another such quasi-translation $x + H$, for which $H_5$ is algebraically independent over $\mathbb C$ of $H_1, H_2, H_3, H_4$. Just like Gordan and N\"other, we apply this result to classify all homogeneous polynomials $h$ in $5$ indeterminates from which the Hessian determinant is zero. Others claim to have reproved 'the result of Gordan and N\"other in $\mathbb P4$' as well, but some of them assume that $h$ is irreducible, which Gordan and N\"other did not. Furthermore, they do not use the above result about homogeneous quasi-translations in dimension $5$ for their classifications. (There is however one paper which could use this result very well, to fix a gap caused by an error.) We derive some other properties which $H$ would have. One of them is that ${\rm deg}\, H \ge 15$, for which we give a proof which is less computational than another proof of it by Dayan Liu. Furthermore, we show that the Zariski closure of the image of $H$ would be an irreducible component of $V(H)$, and prove that every other irreducible component of $V(H)$ would be a $3$-dimensional linear subspace of $\mathbb C5$ which contains the fifth standard basis unit vector.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.