Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Microscopic Advances with Large-Scale Learning: Stochastic Optimization for Cryo-EM (1501.04656v2)

Published 19 Jan 2015 in stat.ML, cs.CV, cs.LG, and q-bio.QM

Abstract: Determining the 3D structures of biological molecules is a key problem for both biology and medicine. Electron Cryomicroscopy (Cryo-EM) is a promising technique for structure estimation which relies heavily on computational methods to reconstruct 3D structures from 2D images. This paper introduces the challenging Cryo-EM density estimation problem as a novel application for stochastic optimization techniques. Structure discovery is formulated as MAP estimation in a probabilistic latent-variable model, resulting in an optimization problem to which an array of seven stochastic optimization methods are applied. The methods are tested on both real and synthetic data, with some methods recovering reasonable structures in less than one epoch from a random initialization. Complex quasi-Newton methods are found to converge more slowly than simple gradient-based methods, but all stochastic methods are found to converge to similar optima. This method represents a major improvement over existing methods as it is significantly faster and is able to converge from a random initialization.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube