Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Implementable confidence sets in high dimensional regression (1501.04467v1)

Published 19 Jan 2015 in stat.ML

Abstract: We consider the setting of linear regression in high dimension. We focus on the problem of constructing adaptive and honest confidence sets for the sparse parameter \theta, i.e. we want to construct a confidence set for theta that contains theta with high probability, and that is as small as possible. The l_2 diameter of a such confidence set should depend on the sparsity S of \theta - the larger S, the wider the confidence set. However, in practice, S is unknown. This paper focuses on constructing a confidence set for \theta which contains \theta with high probability, whose diameter is adaptive to the unknown sparsity S, and which is implementable in practice.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)