Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Operator Lipschitz functions on Banach spaces (1501.03267v2)

Published 14 Jan 2015 in math.FA and math.OA

Abstract: Let $X$, $Y$ be Banach spaces and let $\mathcal{L}(X,Y)$ be the space of bounded linear operators from $X$ to $Y$. We develop the theory of double operator integrals on $\mathcal{L}(X,Y)$ and apply this theory to obtain commutator estimates of the form $|f(B)S-Sf(A)|{\mathcal{L}(X,Y)}\leq \textrm{const} |BS-SA|{\mathcal{L}(X,Y)}$ for a large class of functions $f$, where $A\in\mathcal{L}(X)$, $B\in \mathcal{L}(Y)$ are scalar type operators and $S\in \mathcal{L}(X,Y)$. In particular, we establish this estimate for $f(t):=|t|$ and for diagonalizable operators on $X=\ell_{p}$ and $Y=\ell_{q}$, for $p<q$ and $p=q=1$, and for $X=Y=\mathrm{c}_{0}$. We also obtain results for $p\geq q$. We also study the estimate above in the setting of Banach ideals in $\mathcal{L}(X,Y)$. The commutator estimates we derive hold for diagonalizable matrices with a constant independent of the size of the matrix.

Summary

We haven't generated a summary for this paper yet.