Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimates for generalized fractional integrals associated with operators on Morrey--Campanato spaces (2504.16126v1)

Published 21 Apr 2025 in math.CA

Abstract: Let $\mathcal{L}$ be the infinitesimal generator of an analytic semigroup $\big{e{-t\mathcal L}\big}_{t>0}$ satisfying the Gaussian upper bounds. For given $0<\alpha<n$, let $\mathcal L{-\alpha/2}$ be the generalized fractional integral associated with $\mathcal{L}$, which is defined as \begin{equation*} \mathcal L{-\alpha/2}(f)(x):=\frac{1}{\Gamma(\alpha/2)}\int_0{+\infty} e{-t\mathcal L}(f)(x)t{\alpha/2-1}dt, \end{equation*} where $\Gamma(\cdot)$ is the usual gamma function. For a locally integrable function $b(x)$ defined on $\mathbb Rn$, the related commutator operator $\big[b,\mathcal L{-\alpha/2}\big]$ generated by $b$ and $\mathcal{L}{-\alpha/2}$ is defined by \begin{equation*} \bigb,\mathcal L{-\alpha/2}\big(x):=b(x)\cdot\mathcal{L}{-\alpha/2}(f)(x)-\mathcal{L}{-\alpha/2}(bf)(x). \end{equation*} A new class of Morrey--Campanato spaces associated with $\mathcal{L}$ is introduced in this paper. The authors establish some new estimates for the commutators $\big[b,\mathcal L{-\alpha/2}\big]$ on Morrey--Campanato spaces. The corresponding results for higher-order commutators$\big[b,\mathcal L{-\alpha/2}\big]m$($m\in \mathbb{N}$) are also discussed.

Summary

We haven't generated a summary for this paper yet.