Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homotopy techniques for tensor decomposition and perfect identifiability (1501.00090v2)

Published 31 Dec 2014 in math.AG

Abstract: Let T be a general complex tensor of format $(n_1,...,n_d)$. When the fraction $\prod_in_i/[1+\sum_i(n_i-1)]$ is an integer, and a natural inequality (called balancedness) is satisfied, it is expected that T has finitely many minimal decomposition as a sum of decomposable tensors. We show how homotopy techniques allow us to find all the decompositions of T, starting from a given one. Computationally, this gives a guess regarding the total number of such decompositions. This guess matches exactly with all cases previously known, and predicts several unknown cases. Some surprising experiments yielded two new cases of generic identifiability: formats (3,4,5) and (2,2,2,3) which have a unique decomposition as the sum of 6 and 4 decomposable tensors, respectively. We conjecture that these two cases together with the classically known matrix pencils are the only cases where generic identifiability holds, i.e., the only identifiable cases. Building on the computational experiments, we use algebraic geometry to prove these two new cases are indeed generically identifiable.

Summary

We haven't generated a summary for this paper yet.