Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On generic identifiability of 3-tensors of small rank (1103.2696v1)

Published 14 Mar 2011 in math.AG

Abstract: We introduce an inductive method for the study of the uniqueness of decompositions of tensors, by means of tensors of rank 1. The method is based on the geometric notion of weak defectivity. For three-dimensional tensors of type (a, b, c), a\le b\le c, our method proves that the decomposition is unique (i.e. k-identifiability holds) for general tensors of rank k, as soon as k\le (a+1)(b+1)/16. This improves considerably the known range for identifiability. The method applies also to tensor of higher dimension. For tensors of small size, we give a complete list of situations where identifiability does not hold. Among them, there are 4\times4\times4 tensors of rank 6, an interesting case because of its connection with the study of DNA strings.

Summary

We haven't generated a summary for this paper yet.