Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial-Time Approximation Schemes for Circle and Other Packing Problems (1412.4709v1)

Published 15 Dec 2014 in cs.DS

Abstract: We give an asymptotic approximation scheme (APTAS) for the problem of packing a set of circles into a minimum number of unit square bins. To obtain rational solutions, we use augmented bins of height $1+\gamma$, for some arbitrarily small number $\gamma > 0$. Our algorithm is polynomial on $\log 1/\gamma$, and thus $\gamma$ is part of the problem input. For the special case that $\gamma$ is constant, we give a (one dimensional) resource augmentation scheme, that is, we obtain a packing into bins of unit width and height $1+\gamma$ using no more than the number of bins in an optimal packing. Additionally, we obtain an APTAS for the circle strip packing problem, whose goal is to pack a set of circles into a strip of unit width and minimum height. These are the first approximation and resource augmentation schemes for these problems. Our algorithm is based on novel ideas of iteratively separating small and large items, and may be extended to a wide range of packing problems that satisfy certain conditions. These extensions comprise problems with different kinds of items, such as regular polygons, or with bins of different shapes, such as circles and spheres. As an example, we obtain APTAS's for the problems of packing d-dimensional spheres into hypercubes under the $L_p$-norm.

Citations (11)

Summary

We haven't generated a summary for this paper yet.