Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Statistics of Streaming Sparse Regression (1412.4182v1)

Published 13 Dec 2014 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: We present a sparse analogue to stochastic gradient descent that is guaranteed to perform well under similar conditions to the lasso. In the linear regression setup with irrepresentable noise features, our algorithm recovers the support set of the optimal parameter vector with high probability, and achieves a statistically quasi-optimal rate of convergence of Op(k log(d)/T), where k is the sparsity of the solution, d is the number of features, and T is the number of training examples. Meanwhile, our algorithm does not require any more computational resources than stochastic gradient descent. In our experiments, we find that our method substantially out-performs existing streaming algorithms on both real and simulated data.

Citations (10)

Summary

We haven't generated a summary for this paper yet.