Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Linear relations in families of powers of elliptic curves (1412.3252v3)

Published 10 Dec 2014 in math.NT and math.AG

Abstract: Motivated by recent work of Masser and Zannier on simultaneous torsion on the Legendre elliptic curve $E_\lambda$ of equation $Y2=X(X-1)(X-\lambda)$, we prove that, given $n$ linearly independent points $P_1(\lambda), ...,P_n(\lambda)$ on $E_\lambda$ with coordinates in $\bar{\mathbb{Q}(\lambda)}$, there are at most finitely many complex numbers $\lambda_0$ such that the points $P_1(\lambda_0), ...,P_n(\lambda_0)$ satisfy two independent relations on $E_{\lambda_0}$. This is a special case of conjectures about Unlikely Intersections on families of abelian varieties.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.