Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Regular phase operator and SU(1,1) coherent states of the harmonic oscillator (1412.3218v2)

Published 10 Dec 2014 in quant-ph

Abstract: A new solution is proposed to the long-standing problem of describing the quantum phase of a harmonic oscillator. In terms of an'exponential phase operator', defined by a new 'polar decomposition' of the quantized amplitude of the oscillator, a regular phase operator is constructed in the Hilbert-Fock space as a strongly convergent power series. It is shown that the eigenstates of the new 'exponential operators are SU(1,1) coherent states in the Holstein-Primakoff realization. In terms of these eigenstates, the diagonal representation of phase densities and a generalized spectal resolution of the regular phase operator are derived, which suit very well to our intuitive pictures on classical phase-related quantities

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.