Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

A contamination model for approximate stochastic order: extended version (1412.1920v1)

Published 5 Dec 2014 in stat.ME

Abstract: Stochastic ordering among distributions has been considered in a variety of scenarios. Economic studies often involve research about the ordering of investment strategies or social welfare. However, as noted in the literature, stochastic orderings are often a too strong assumption which is not supported by the data even in cases in which the researcher tends to believe that a certain variable is somehow smaller than other. Instead of considering this rigid model of stochastic order we propose to look at a more flexible version in which two distributions are said to satisfy an approximate stochastic order relation if they are slightly contaminated versions of distributions which do satisfy the stochastic ordering. The minimal level of contamination that makes this approximate model hold can be used as a measure of the deviation of the original distributions from the exact stochastic order model. Our approach is based on the use of trimmings of probability measures. We discuss the connection between them and the approximate stochastic order model and provide theoretical support for its use in data analysis. We also provide simulation results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.