Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

Approximation of Eigenfunctions in Kernel-based Spaces (1411.7656v2)

Published 27 Nov 2014 in math.NA

Abstract: Kernel-based methods in Numerical Analysis have the advantage of yielding optimal recovery processes in the "native" Hilbert space $\calh$ in which they are reproducing. Continuous kernels on compact domains have an expansion into eigenfunctions that are both $L_2$-orthonormal and orthogonal in $\calh$ (Mercer expansion). This paper examines the corresponding eigenspaces and proves that they have optimality properties among all other subspaces of $\calh$. These results have strong connections to $n$-widths in Approximation Theory, and they establish that errors of optimal approximations are closely related to the decay of the eigenvalues. Though the eigenspaces and eigenvalues are not readily available, they can be well approximated using the standard $n$-dimensional subspaces spanned by translates of the kernel with respect to $n$ nodes or centers. We give error bounds for the numerical approximation of the eigensystem via such subspaces. A series of examples shows that our numerical technique via a greedy point selection strategy allows to calculate the eigensystems with good accuracy.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.