Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Algorithms in the Ultra-Wide Word Model (1411.7359v2)

Published 26 Nov 2014 in cs.DS and cs.DC

Abstract: The effective use of parallel computing resources to speed up algorithms in current multi-core parallel architectures remains a difficult challenge, with ease of programming playing a key role in the eventual success of various parallel architectures. In this paper we consider an alternative view of parallelism in the form of an ultra-wide word processor. We introduce the Ultra-Wide Word architecture and model, an extension of the word-RAM model that allows for constant time operations on thousands of bits in parallel. Word parallelism as exploited by the word-RAM model does not suffer from the more difficult aspects of parallel programming, namely synchronization and concurrency. For the standard word-RAM algorithms, the speedups obtained are moderate, as they are limited by the word size. We argue that a large class of word-RAM algorithms can be implemented in the Ultra-Wide Word model, obtaining speedups comparable to multi-threaded computations while keeping the simplicity of programming of the sequential RAM model. We show that this is the case by describing implementations of Ultra-Wide Word algorithms for dynamic programming and string searching. In addition, we show that the Ultra-Wide Word model can be used to implement a nonstandard memory architecture, which enables the sidestepping of lower bounds of important data structure problems such as priority queues and dynamic prefix sums. While similar ideas about operating on large words have been mentioned before in the context of multimedia processors [Thorup 2003], it is only recently that an architecture like the one we propose has become feasible and that details can be worked out.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube