Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Complex Matrix Factorization approach to Joint Modeling of Magnitude and Phase for Source Separation (1411.6741v1)

Published 25 Nov 2014 in cs.SD

Abstract: Conventional NMF methods for source separation factorize the matrix of spectral magnitudes. Spectral Phase is not included in the decomposition process of these methods. However, phase of the speech mixture is generally used in reconstructing the target speech signal. This results in undesired traces of interfering sources in the target signal. In this paper the spectral phase is incorporated in the decomposition process itself. Additionally, the complex matrix factorization problem is reduced to an NMF problem using simple transformations. This results in effective separation of speech mixtures since both magnitude and phase are utilized jointly in the separation process. Improvement in source separation results are demonstrated using objective quality evaluations on the GRID corpus.

Citations (2)

Summary

We haven't generated a summary for this paper yet.