Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase recovery in NMF for audio source separation: an insightful benchmark (1605.07469v1)

Published 24 May 2016 in cs.SD

Abstract: Nonnegative Matrix Factorization (NMF) is a powerful tool for decomposing mixtures of audio signals in the Time-Frequency (TF) domain. In applications such as source separation, the phase recovery for each extracted component is a major issue since it often leads to audible artifacts. In this paper, we present a methodology for evaluating various NMF-based source separation techniques involving phase reconstruction. For each model considered, a comparison between two approaches (blind separation without prior information and oracle separation with supervised model learning) is performed, in order to inquire about the room for improvement for the estimation methods. Experimental results show that the High Resolution NMF (HRNMF) model is particularly promising, because it is able to take phases and correlations over time into account with a great expressive power.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Paul Magron (25 papers)
  2. Roland Badeau (14 papers)
  3. Bertrand David (8 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.