2000 character limit reached
Stochastic Block Transition Models for Dynamic Networks (1411.5404v2)
Published 19 Nov 2014 in cs.SI, cs.LG, physics.soc-ph, and stat.ME
Abstract: There has been great interest in recent years on statistical models for dynamic networks. In this paper, I propose a stochastic block transition model (SBTM) for dynamic networks that is inspired by the well-known stochastic block model (SBM) for static networks and previous dynamic extensions of the SBM. Unlike most existing dynamic network models, it does not make a hidden Markov assumption on the edge-level dynamics, allowing the presence or absence of edges to directly influence future edge probabilities while retaining the interpretability of the SBM. I derive an approximate inference procedure for the SBTM and demonstrate that it is significantly better at reproducing durations of edges in real social network data.