Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Block Transition Models for Dynamic Networks (1411.5404v2)

Published 19 Nov 2014 in cs.SI, cs.LG, physics.soc-ph, and stat.ME

Abstract: There has been great interest in recent years on statistical models for dynamic networks. In this paper, I propose a stochastic block transition model (SBTM) for dynamic networks that is inspired by the well-known stochastic block model (SBM) for static networks and previous dynamic extensions of the SBM. Unlike most existing dynamic network models, it does not make a hidden Markov assumption on the edge-level dynamics, allowing the presence or absence of edges to directly influence future edge probabilities while retaining the interpretability of the SBM. I derive an approximate inference procedure for the SBTM and demonstrate that it is significantly better at reproducing durations of edges in real social network data.

Citations (95)

Summary

We haven't generated a summary for this paper yet.