Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic stochastic blockmodels: Statistical models for time-evolving networks (1304.5974v1)

Published 22 Apr 2013 in cs.SI, cs.LG, physics.soc-ph, and stat.ME

Abstract: Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we propose a state-space model for dynamic networks that extends the well-known stochastic blockmodel for static networks to the dynamic setting. We then propose a procedure to fit the model using a modification of the extended Kalman filter augmented with a local search. We apply the procedure to analyze a dynamic social network of email communication.

Citations (89)

Summary

We haven't generated a summary for this paper yet.