Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Inference for Trans-dimensional Bayesian Models with Diffusive Nested Sampling (1411.3921v3)

Published 14 Nov 2014 in stat.CO, astro-ph.IM, and physics.data-an

Abstract: Many inference problems involve inferring the number $N$ of components in some region, along with their properties ${\mathbf{x}i}{i=1}N$, from a dataset $\mathcal{D}$. A common statistical example is finite mixture modelling. In the Bayesian framework, these problems are typically solved using one of the following two methods: i) by executing a Monte Carlo algorithm (such as Nested Sampling) once for each possible value of $N$, and calculating the marginal likelihood or evidence as a function of $N$; or ii) by doing a single run that allows the model dimension $N$ to change (such as Markov Chain Monte Carlo with birth/death moves), and obtaining the posterior for $N$ directly. In this paper we present a general approach to this problem that uses trans-dimensional MCMC embedded within a Nested Sampling algorithm, allowing us to explore the posterior distribution and calculate the marginal likelihood (summed over $N$) even if the problem contains a phase transition or other difficult features such as multimodality. We present two example problems, finding sinusoidal signals in noisy data, and finding and measuring galaxies in a noisy astronomical image. Both of the examples demonstrate phase transitions in the relationship between the likelihood and the cumulative prior mass, highlighting the need for Nested Sampling.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)