Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Tracking Triadic Cardinality Distributions for Burst Detection in Social Activity Streams (1411.3808v4)

Published 14 Nov 2014 in cs.SI and physics.soc-ph

Abstract: In everyday life, we often observe unusually frequent interactions among people before or during important events, e.g., we receive/send more greetings from/to our friends on Christmas Day, than usual. We also observe that some videos suddenly go viral through people's sharing in online social networks (OSNs). Do these seemingly different phenomena share a common structure? All these phenomena are associated with sudden surges of user activities in networks, which we call "bursts" in this work. We find that the emergence of a burst is accompanied with the formation of triangles in networks. This finding motivates us to propose a new method to detect bursts in OSNs. We first introduce a new measure, "triadic cardinality distribution", corresponding to the fractions of nodes with different numbers of triangles, i.e., triadic cardinalities, within a network. We demonstrate that this distribution changes when a burst occurs, and is naturally immunized against spamming social-bot attacks. Hence, by tracking triadic cardinality distributions, we can reliably detect bursts in OSNs. To avoid handling massive activity data generated by OSN users, we design an efficient sample-estimate solution to estimate the triadic cardinality distribution from sampled data. Extensive experiments conducted on real data demonstrate the usefulness of this triadic cardinality distribution and the effectiveness of our sample-estimate solution.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.