Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fourier-Splitting methods for the dynamics of rotating Bose-Einstein condensates (1411.2905v3)

Published 11 Nov 2014 in math.NA

Abstract: We present a new method to propagate rotating Bose-Einstein condensates subject to explicitly time-dependent trapping potentials. Using algebraic techniques, we combine Magnus expansions and splitting methods to yield any order methods for the multivariate and nonautonomous quadratic part of the Hamiltonian that can be computed using only Fourier transforms at the cost of solving a small system of polynomial equations. The resulting scheme solves the challenging component of the (nonlinear) Hamiltonian and can be combined with optimized splitting methods to yield efficient algorithms for rotating Bose-Einstein condensates. The method is particularly efficient for potentials that can be regarded as perturbed rotating and trapped condensates, e.g., for small nonlinearities, since it retains the near-integrable structure of the problem. For large nonlinearities, the method remains highly efficient if higher order p > 2 is sought. Furthermore, we show how it can adapted to the presence of dissipation terms. Numerical examples illustrate the performance of the scheme.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)