Effect of oblateness, radiation and a circular cluster of material points on the stability of equilibrium points in the restricted four-body problem (1411.1160v1)
Abstract: Within the framework of restricted four-body problem, we study the motion of an infinitesimal mass by assuming that the primaries of the system are radiating-oblate spheroids surrounded by a circular cluster of material points. In our model, we assume that the two masses of the primaries $m_2$ and $m_3$ are equal to $\mu$ and the mass $m_1$ is $1-2\mu$. By using numerical approach, we have obtained the equilibrium points and examined their linear stability. The effect of potential created by the circular cluster and oblateness coefficients for the more massive primary and the less massive primary, on the existence and linear stability of the libration point have been critically examine via numerical computation. The stability of these points examined shows that the collinear and the non-collinear equilibrium points are unstable. The result presented in this paper have practical application in astrophysics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.