Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

The Phase Diagram of the $ν=5/2$ Fractional Quantum Hall Effect: Effects of Landau Level Mixing and Non-Zero Width (1411.1068v2)

Published 4 Nov 2014 in cond-mat.str-el and cond-mat.mes-hall

Abstract: Interesting non-Abelian states, e.g., the Moore-Read Pfaffian and the anti-Pfaffian, offer candidate descriptions of the $\nu = 5/2$ fractional quantum Hall state. But the significant controversy surrounding the nature of the $\nu = 5/2$ state has been hampered by the fact that the competition between these and other states is affected by small parameter changes. To study the phase diagram of the $\nu = 5/2$ state we numerically diagonalize a comprehensive effective Hamiltonian describing the fractional quantum Hall effect of electrons under realistic conditions in GaAs semiconductors. The effective Hamiltonian takes Landau level mixing into account to lowest-order perturbatively in $\kappa$, the ratio of the Coulomb energy scale to the cyclotron gap. We also incorporate non-zero width $w$ of the quantum well and sub-band mixing. We find the ground state in both the torus and spherical geometries as a function of $\kappa$ and $w$. To sort out the non-trivial competition between candidate ground states we analyze the following 4 criteria: its overlap with trial wave functions; the magnitude of energy gaps; the sign of the expectation value of an order parameter for particle-hole symmetry breaking; and the entanglement spectrum. We conclude that the ground state is in the universality class of the Moore-Read Pfaffian state, rather than the anti-Pfaffian, for $\kappa < {\kappa_c}(w)$, where ${\kappa_c}(w)$ is a $w$-dependent critical value $0.6 \lesssim{\kappa_c}(w)\lesssim 1$. We observe that both Landau level mixing and non-zero width suppress the excitation gap, but Landau level mixing has a larger effect in this regard. Our findings have important implications for the identification of non-Abelian fractional quantum Hall states.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.