Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Spectral zeta functions of graphs and the Riemann zeta function in the critical strip (1410.8010v2)

Published 29 Oct 2014 in math.NT and math.CO

Abstract: We initiate the study of spectral zeta functions $\zeta_{X}$ for finite and infinite graphs $X$, instead of the Ihara zeta function, with a perspective towards zeta functions from number theory and connections to hypergeometric functions. The Riemann hypothesis is shown to be equivalent to an approximate functional equation of graph zeta functions. The latter holds at all points where Riemann's zeta function $\zeta(s)$ is non-zero. This connection arises via a detailed study of the asymptotics of the spectral zeta functions of finite torus graphs in the critcal strip and estimates on the real part of the logarithmic derivative of $\zeta(s)$. We relate $\zeta_{\mathbb{Z}}$ to Euler's beta integral and show how to complete it giving the functional equation $\xi_{\mathbb{Z}}(1-s)=\xi_{\mathbb{Z}}(s)$. This function appears in the theory of Eisenstein series although presumably with this spectral intepretation unrecognized. In higher dimensions $d$ we provide a meromorphic continuation of $\zeta_{\mathbb{Z}{d}}(s)$ to the whole plane and identify the poles. From our aymptotics several known special values of $\zeta(s)$ are derived as well as its non-vanishing on the line $Re(s)=1$. We determine the spectral zeta functions of regular trees and show it to be equal to a specialization of Appell's hypergeometric function $F_{1}$ via an Euler-type integral formula due to Picard.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.