Lévy walks (1410.5100v2)
Abstract: Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The L\'{e}vy walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, bio-physics, and behavioral science demonstrate that this particular type of random walks provides significant insight into complex transport phenomena. This review provides a self-consistent introduction to L\'{e}vy walks, surveys their existing applications, including latest advances, and outlines further perspectives.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.