Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Testing Poisson Binomial Distributions (1410.3386v2)

Published 13 Oct 2014 in cs.DS, cs.IT, cs.LG, and math.IT

Abstract: A Poisson Binomial distribution over $n$ variables is the distribution of the sum of $n$ independent Bernoullis. We provide a sample near-optimal algorithm for testing whether a distribution $P$ supported on ${0,...,n}$ to which we have sample access is a Poisson Binomial distribution, or far from all Poisson Binomial distributions. The sample complexity of our algorithm is $O(n{1/4})$ to which we provide a matching lower bound. We note that our sample complexity improves quadratically upon that of the naive "learn followed by tolerant-test" approach, while instance optimal identity testing [VV14] is not applicable since we are looking to simultaneously test against a whole family of distributions.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.