Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Global clustering coefficient in scale-free networks (1410.1997v2)

Published 8 Oct 2014 in math.PR and math.CO

Abstract: In this paper, we analyze the behavior of the global clustering coefficient in scale free graphs. We are especially interested in the case of degree distribution with an infinite variance, since such degree distribution is usually observed in real-world networks of diverse nature. There are two common definitions of the clustering coefficient of a graph: global clustering and average local clustering. It is widely believed that in real networks both clustering coefficients tend to some positive constant as the networks grow. There are several models for which the average local clustering coefficient tends to a positive constant. On the other hand, there are no models of scale-free networks with an infinite variance of degree distribution and with a constant global clustering. In this paper we prove that if the degree distribution obeys the power law with an infinite variance, then the global clustering coefficient tends to zero with high probability as the size of a graph grows.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube