Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Lower Bound for the Optimization of Finite Sums (1410.0723v4)

Published 2 Oct 2014 in stat.ML and math.OC

Abstract: This paper presents a lower bound for optimizing a finite sum of $n$ functions, where each function is $L$-smooth and the sum is $\mu$-strongly convex. We show that no algorithm can reach an error $\epsilon$ in minimizing all functions from this class in fewer than $\Omega(n + \sqrt{n(\kappa-1)}\log(1/\epsilon))$ iterations, where $\kappa=L/\mu$ is a surrogate condition number. We then compare this lower bound to upper bounds for recently developed methods specializing to this setting. When the functions involved in this sum are not arbitrary, but based on i.i.d. random data, then we further contrast these complexity results with those for optimal first-order methods to directly optimize the sum. The conclusion we draw is that a lot of caution is necessary for an accurate comparison, and identify machine learning scenarios where the new methods help computationally.

Citations (121)

Summary

We haven't generated a summary for this paper yet.