Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Complexity of Minimizing Convex Finite Sums Without Using the Indices of the Individual Functions (2002.03273v1)

Published 9 Feb 2020 in cs.LG, math.OC, and stat.ML

Abstract: Recent advances in randomized incremental methods for minimizing $L$-smooth $\mu$-strongly convex finite sums have culminated in tight complexity of $\tilde{O}((n+\sqrt{n L/\mu})\log(1/\epsilon))$ and $O(n+\sqrt{nL/\epsilon})$, where $\mu>0$ and $\mu=0$, respectively, and $n$ denotes the number of individual functions. Unlike incremental methods, stochastic methods for finite sums do not rely on an explicit knowledge of which individual function is being addressed at each iteration, and as such, must perform at least $\Omega(n2)$ iterations to obtain $O(1/n2)$-optimal solutions. In this work, we exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model, showing that this lower bound is indeed tight. Following a similar approach, we propose a novel adaptation of SVRG which is both \emph{compatible with stochastic oracles}, and achieves complexity bounds of $\tilde{O}((n2+n\sqrt{L/\mu})\log(1/\epsilon))$ and $O(n\sqrt{L/\epsilon})$, for $\mu>0$ and $\mu=0$, respectively. Our bounds hold w.h.p. and match in part existing lower bounds of $\tilde{\Omega}(n2+\sqrt{nL/\mu}\log(1/\epsilon))$ and $\tilde{\Omega}(n2+\sqrt{nL/\epsilon})$, for $\mu>0$ and $\mu=0$, respectively.

Citations (2)

Summary

We haven't generated a summary for this paper yet.