Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 21 tok/s Pro
GPT-4o 90 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 213 tok/s Pro
2000 character limit reached

On a Gopakumar-Vafa form of partition function of Chern-Simons theory on classical and exceptional lines (1410.0376v2)

Published 1 Oct 2014 in hep-th, math-ph, and math.MP

Abstract: We show that partition function of Chern-Simons theory on three-sphere with classical and exceptional groups (actually on the whole corresponding lines in Vogel's plane) can be represented as ratio of respectively triple and double sine functions (last function is essentially a modular quantum dilogarithm). The product representation of sine functions gives Gopakumar-Vafa structure form of partition function, which in turn gives a corresponding integer invariants of manifold after geometrical transition. In this way we suggest to extend gauge/string duality to exceptional groups, although one still have to resolve few problems. In both classical and exceptional cases an additional terms, non-perturbative w.r.t. the string coupling constant, appear. The full universal partition function of Chern-Simons theory on three-sphere is shown to be the ratio of quadruple sine functions. We also briefly discuss the matrix model for exceptional line.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)