Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Formes automorphes et voisins de Kneser des réseaux de Niemeier (1409.7616v2)

Published 26 Sep 2014 in math.NT and math.RT

Abstract: In this memoir, we study the even unimodular lattices of rank at most 24, as well as a related collection of automorphic forms of the orthogonal, symplectic and linear groups of small rank. Our guide is the question of determining the number of p-neighborhoods, in the sense of M. Kneser, between two isometry classes of such lattices. We prove a formula for this number, in which occur certain Siegel modular forms of genus 1 and 2. It has several applications, such as the proof of a conjecture of G. Nebe and B. Venkov about the linear span of the higher genus theta series of the Niemeier lattices, the computation of the p-neighborhoods graphs of the Niemeier lattices (the case p = 2 being due to Borcherds), or the proof of a congruence conjectured by G. Harder. Classical arguments reduce the problem to the description of the automorphic representations of a suitable integral form of the Euclidean orthogonal group of R24 which are unramified at each finite prime and trivial at the archimedean prime. The recent results of J. Arthur suggest several new approaches to this type of questions. This is the other main theme that we develop in this memoir. We give a number of other applications, for instance to the classification of Siegel modular cuspforms of weight at most 12 for the full Siegel modular group.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.