Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tracy-Widom Distribution for the Largest Eigenvalue of Real Sample Covariance Matrices with General Population (1409.4979v2)

Published 17 Sep 2014 in math.PR, math.ST, and stat.TH

Abstract: We consider sample covariance matrices of the form $\mathcal{Q}=(\Sigma{1/2}X)(\Sigma{1/2} X)*$, where the sample $X$ is an $M\times N$ random matrix whose entries are real independent random variables with variance $1/N$ and where $\Sigma$ is an $M\times M$ positive-definite deterministic matrix. We analyze the asymptotic fluctuations of the largest rescaled eigenvalue of $\mathcal{Q}$ when both $M$ and $N$ tend to infinity with $N/M\to d\in(0,\infty)$. For a large class of populations $\Sigma$ in the sub-critical regime, we show that the distribution of the largest rescaled eigenvalue of $\mathcal{Q}$ is given by the type-1 Tracy-Widom distribution under the additional assumptions that (1) either the entries of $X$ are i.i.d. Gaussians or (2) that $\Sigma$ is diagonal and that the entries of $X$ have a subexponential decay.

Summary

We haven't generated a summary for this paper yet.