Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence rate to the Tracy--Widom laws for the largest eigenvalue of sample covariance matrices (2108.02728v1)

Published 5 Aug 2021 in math.PR, math.ST, and stat.TH

Abstract: We establish a quantitative version of the Tracy--Widom law for the largest eigenvalue of high dimensional sample covariance matrices. To be precise, we show that the fluctuations of the largest eigenvalue of a sample covariance matrix $X*X$ converge to its Tracy--Widom limit at a rate nearly $N{-1/3}$, where $X$ is an $M \times N$ random matrix whose entries are independent real or complex random variables, assuming that both $M$ and $N$ tend to infinity at a constant rate. This result improves the previous estimate $N{-2/9}$ obtained by Wang [73]. Our proof relies on a Green function comparison method [27] using iterative cumulant expansions, the local laws for the Green function and asymptotic properties of the correlation kernel of the white Wishart ensemble.

Summary

We haven't generated a summary for this paper yet.