Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extensions of positive operators and functionals (1409.3377v1)

Published 11 Sep 2014 in math.FA

Abstract: We consider linear operators defined on a subspace of a complex Banach space into its topological antidual acting positively in a natural sense. The goal of this paper is to investigate of this kind of operators. The main theorem is a constructive characterization of the bounded positive extendibility of these linear mappings. From this result we can characterize the compactness of the extended operators and that when the positive extensions have closed ranges. As a main application of our general extension theorem, we present some necessary and sufficient conditions that a positive functional defined on a left ideal of a Banach $*$-algebra admits a representable positive extension. The approach we use here is completely constructive.

Summary

We haven't generated a summary for this paper yet.