2000 character limit reached
Almost all positive continuous linear functionals can be extended (2009.11844v2)
Published 24 Sep 2020 in math.FA
Abstract: Let $F$ be an ordered topological vector space (over $\mathbb{R}$) whose positive cone $F_+$ is weakly closed, and let $E \subseteq F$ be a subspace. We prove that the set of positive continuous linear functionals on $E$ that can be extended (positively and continuously) to $F$ is weak-$*$ dense in the topological dual wedge $E_+'$. Furthermore, we show that this result cannot be generalized to arbitrary positive operators, even in finite-dimensional spaces.