2000 character limit reached
Almost all positive continuous linear functionals can be extended
Published 24 Sep 2020 in math.FA | (2009.11844v2)
Abstract: Let $F$ be an ordered topological vector space (over $\mathbb{R}$) whose positive cone $F_+$ is weakly closed, and let $E \subseteq F$ be a subspace. We prove that the set of positive continuous linear functionals on $E$ that can be extended (positively and continuously) to $F$ is weak-$*$ dense in the topological dual wedge $E_+'$. Furthermore, we show that this result cannot be generalized to arbitrary positive operators, even in finite-dimensional spaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.