Optimal boundary control of a viscous Cahn-Hilliard system with dynamic boundary condition and double obstacle potentials (1408.6146v2)
Abstract: In this paper, we investigate optimal boundary control problems for Cahn-Hilliard variational inequalities with a dynamic boundary condition involving double obstacle potentials and the Laplace-Beltrami operator. The cost functional is of standard tracking type, and box constraints for the controls are prescribed. We prove existence of optimal controls and derive first-order necessary conditions of optimality. The general strategy, which follows the lines of the recent approach by Colli, Farshbaf-Shaker, Sprekels (see the preprint arXiv:1308.5617) to the (simpler) Allen-Cahn case, is the following: we use the results that were recently established by Colli, Gilardi, Sprekels in the preprint arXiv:1407.3916 [math.AP] for the case of (differentiable) logarithmic potentials and perform a so-called "deep quench limit". Using compactness and monotonicity arguments, it is shown that this strategy leads to the desired first-order necessary optimality conditions for the case of (non-differentiable) double obstacle potentials.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.