Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Rosenthal's inequalities for independent and negatively dependent random variables under sub-linear expectations with applications (1408.5291v6)

Published 22 Aug 2014 in math.PR

Abstract: Classical Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of random variables are basic tools for studying the strong laws of large numbers. In this paper, motived by the notion of independent and identically distributed random variables under the sub-linear expectation initiated by Peng (2006, 2008b), we introduce the concept of negative dependence of random variables and establish Kolmogorov's and Rosenthal's inequalities for the maximum partial sums of negatively dependent random variables under the sub-linear expectations. As an application, we show that Kolmogorov's strong law of larger numbers holds for independent and identically distributed under a continuous sub-linear expectation if and only if the corresponding Choquet integral is finite.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.