Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On continuous Polish group actions and equivalence relations (1408.2097v4)

Published 9 Aug 2014 in math.LO

Abstract: Let $X = \left{P \in [0,1]{\bf N} : \left(\forall \nu \in {\bf N} \right) \left(P \left({\nu } \right) > 0 \right) \wedge \sum\limits_{\nu = 0}{\infty} P \left({\nu } \right) = 1 \right} $ be the Polish space of probability measures on ${\bf N}$, each of which assigns positive probability to every elementary event, while for any $P \in X$, let ${\Gamma}{P} = \left{\xi \in L{1}({\bf N}, P) : \left(\forall \nu \in {\bf N} \right) \left(\xi (\nu) > 0 \right) \wedge \sum\limits{\nu = 0}{\infty} \xi (\nu) P \left({\nu } \right) = 1 \right} $ and let ${\Phi}{P} : {\Gamma}{P} \ni \xi \mapsto {\Phi}{P}(\xi) \in X$ be defined by the relation $\left({\Phi}{P}(\xi) \right) \left({\nu } \right) = \xi (\nu) P \left({\nu } \right) $, whenever $\nu \in {\bf N}$. If we consider the equivalence relation $E = \left{(P,Q) \in X{2} : \left(\exists \xi \in {\Gamma}{P} \right) \left(Q = {\Phi}{P}(\xi) \right) \right} $, the Polish space ${\bf P} = \left{{\bf x} \in {\ell}{1} \left({\bf R} \right) : \left(\forall n \in {\bf N} \right) \left({\bf x}(n) > 0 \right) \right} $ and the commutative Polish group ${\bf G} = \left{{\bf g} \in (0, \infty){\bf N} : \lim\limits_{n \rightarrow \infty}{\bf g}(n) = 1 \right} $, while we set $\left({\bf g} \cdot {\bf x} \right) (n) = {\bf g}(n){\bf x}(n)$, whenever ${\bf g} \in {\bf G}$, ${\bf x} \in {\bf P}$ and $n \in {\bf N}$, then $E$ is definable and it admits a strong approximation by the turbulent Polish group action of ${\bf G}$ on ${\bf P}$.

Summary

We haven't generated a summary for this paper yet.