Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

McCool groups of toral relatively hyperbolic groups (1408.0418v1)

Published 2 Aug 2014 in math.GR

Abstract: The outer automorphism group Out(G) of a group G acts on the set of conjugacy classes of elements of G. McCool proved that the stabilizer $Mc(c_1,...,c_n)$ of a finite set of conjugacy classes is finitely presented when G is free. More generally, we consider the group $Mc(H_1,...,H_n)$ of outer automorphisms $\Phi$ of G acting trivially on a family of subgroups $H_i$, in the sense that $\Phi$ has representatives $\alpha_i$ with $\alpha_i$ equal to the identity on $H_i$. When G is a toral relatively hyperbolic group, we show that these two definitions lead to the same subgroups of Out(G), which we call "McCool groups" of G. We prove that such McCool groups are of type VF (some finite index subgroup has a finite classifying space). Being of type VF also holds for the group of automorphisms of G preserving a splitting of G over abelian groups. We show that McCool groups satisfy a uniform chain condition: there is a bound, depending only on G, for the length of a strictly decreasing sequence of McCool groups of G. Similarly, fixed subgroups of automorphisms of G satisfy a uniform chain condition.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube