Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cycle-Level Products in Equivariant Cohomology of Toric Varieties (1407.7168v1)

Published 26 Jul 2014 in math.AG

Abstract: In this paper, we define an action of the group of equivariant Cartier divisors on a toric variety X on the equivariant cycle groups of X, arising naturally from a choice of complement map on the underlying lattice. If X is nonsingular, this gives a lifting of the multiplication in equivariant cohomology to the level of equivariant cycles. As a consequence, one naturally obtains an equivariant cycle representative of the equivariant Todd class of any toric variety. These results extend to equivariant cohomology the results of Thomas and Pommersheim. In the case of a complement map arising from an inner product, we show that the equivariant cycle Todd class obtained from our construction is identical to the result of the inductive, combinatorial construction of Berline-Vergne. In the case of arbitrary complement maps, we show that our Todd class formula yields the local Euler-Maclarurin formula introduced in Garoufalidis-Pommersheim.

Summary

We haven't generated a summary for this paper yet.