Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivariant toric geometry and Euler-Maclaurin formulae -- an overview (2403.19715v1)

Published 27 Mar 2024 in math.AG

Abstract: We survey recent developments in the study of torus equivariant motivic Chern and Hirzebruch characteristic classes of projective toric varieties, with applications to calculating equivariant Hirzebruch genera of torus-invariant Cartier divisors in terms of torus characters, as well as to general Euler-Maclaurin type formulae for full-dimensional simple lattice polytopes. We present recent results by the authors, emphasizing the main ideas and some key examples. This includes global formulae for equivariant Hirzebruch classes in the simplicial context proved by localization at the torus fixed points, a weighted versions of a classical formula of Brion, as well as of the Molien formula of Brion-Vergne. Our Euler-Maclaurin type formulae provide generalizations to arbitrary coherent sheaf coefficients of the Euler-Maclaurin formulae of Cappell-Shaneson, Brion-Vergne, Guillemin, etc., via the equivariant Hirzebruch-Riemann-Roch formalism. Our approach, based on motivic characteristic classes, allows us, e.g., to obtain such Euler-Maclaurin formulae also for (the interior of) a face. We obtain such results also in the weighted context, and for Minkovski summands of the given full-dimensional lattice polytope.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com