Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Hybrid Crossover based Artificial Bee Colony Algorithm for Optimization Problem (1407.5574v1)

Published 21 Jul 2014 in cs.AI and cs.NE

Abstract: Artificial bee colony (ABC) algorithm has proved its importance in solving a number of problems including engineering optimization problems. ABC algorithm is one of the most popular and youngest member of the family of population based nature inspired meta-heuristic swarm intelligence method. ABC has been proved its superiority over some other Nature Inspired Algorithms (NIA) when applied for both benchmark functions and real world problems. The performance of search process of ABC depends on a random value which tries to balance exploration and exploitation phase. In order to increase the performance it is required to balance the exploration of search space and exploitation of optimal solution of the ABC. This paper outlines a new hybrid of ABC algorithm with Genetic Algorithm. The proposed method integrates crossover operation from Genetic Algorithm (GA) with original ABC algorithm. The proposed method is named as Crossover based ABC (CbABC). The CbABC strengthens the exploitation phase of ABC as crossover enhances exploration of search space. The CbABC tested over four standard benchmark functions and a popular continuous optimization problem.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sandeep Kumar (143 papers)
  2. Vivek Kumar Sharma (5 papers)
  3. Rajani Kumari (5 papers)
Citations (45)

Summary

We haven't generated a summary for this paper yet.